1,029 research outputs found

    Utility and safety of draining pleural effusions in mechanically ventilated patients: a systematic review and meta-analysis

    Get PDF
    Abstract Introduction Pleural effusions are frequently drained in mechanically ventilated patients but the benefits and risks of this procedure are not well established. Methods We performed a literature search of multiple databases (MEDLINE, EMBASE, HEALTHSTAR, CINAHL) up to April 2010 to identify studies reporting clinical or physiological outcomes of mechanically ventilated critically ill patients who underwent drainage of pleural effusions. Studies were adjudicated for inclusion independently and in duplicate. Data on duration of ventilation and other clinical outcomes, oxygenation and lung mechanics, and adverse events were abstracted in duplicate independently. Results Nineteen observational studies (N = 1,124) met selection criteria. The mean PaO2:FiO2 ratio improved by 18% (95% confidence interval (CI) 5% to 33%, I 2 = 53.7%, five studies including 118 patients) after effusion drainage. Reported complication rates were low for pneumothorax (20 events in 14 studies including 965 patients; pooled mean 3.4%, 95% CI 1.7 to 6.5%, I 2 = 52.5%) and hemothorax (4 events in 10 studies including 721 patients; pooled mean 1.6%, 95% CI 0.8 to 3.3%, I 2 = 0%). The use of ultrasound guidance (either real-time or for site marking) was not associated with a statistically significant reduction in the risk of pneumothorax (OR = 0.32; 95% CI 0.08 to 1.19). Studies did not report duration of ventilation, length of stay in the intensive care unit or hospital, or mortality. Conclusions Drainage of pleural effusions in mechanically ventilated patients appears to improve oxygenation and is safe. We found no data to either support or refute claims of beneficial effects on clinically important outcomes such as duration of ventilation or length of stay

    Critical care resources in the Solomon Islands: a cross-sectional survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are minimal data available on critical care case-mix, care processes and outcomes in lower and middle income countries (LMICs). The objectives of this paper were to gather data in the Solomon Islands in order to gain a better understanding of common presentations of critical illness, available hospital resources, and what resources would be helpful in improving the care of these patients in the future.</p> <p>Methods</p> <p>This study used a mixed methods approach, including a cross sectional survey of respondents' opinions regarding critical care needs, ethnographic information and qualitative data.</p> <p>Results</p> <p>The four most common conditions leading to critical illness in the Solomon Islands are malaria, diseases of the respiratory system including pneumonia and influenza, diabetes mellitus and tuberculosis. Complications of surgery and trauma less frequently result in critical illness. Respondents emphasised the need for basic critical care resources in LMICs, including equipment such as oximeters and oxygen concentrators; greater access to medications and blood products; laboratory services; staff education; and the need for at least one national critical care facility.</p> <p>Conclusions</p> <p>A large degree of critical illness in LMICs is likely due to inadequate resources for primary prevention and healthcare; however, for patients who fall through the net of prevention, there may be simple therapies and context-appropriate resources to mitigate the high burden of morbidity and mortality. Emphasis should be on the development and acquisition of simple and inexpensive tools rather than complicated equipment, to prevent critical care from unduly diverting resources away from other important parts of the health system.</p

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    Ultrastructural and functional fate of recycled vesicles in hippocampal synapses

    Get PDF
    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution

    Academic careers in global pulmonary and critical care medicine

    Get PDF
    The burden of respiratory and critical illness is high worldwide, yet specialist care is underrepresented in low- and middle-income countries (LMICs) [1]. For many areas of medicine, the past decade has witnessed tremendous growth in global health opportunities for trainees; however, these opportunities tend to be restricted to individual institutions and geographic regions and academic global pulmonary and critical care medicine (PCCM) remains a relatively novel concept [2]. Consequently, PCCM fellows and junior faculty at institutions with limited global health mentorship have little guidance in building successful global health careers

    Climate change adaptation in European river basins

    Get PDF
    This paper contains an assessment and standardized comparative analysis of the current water management regimes in four case-studies in three European river basins: the Hungarian part of the Upper Tisza, the Ukrainian part of the Upper Tisza (also called Zacarpathian Tisza), Alentejo Region (including the Alqueva Reservoir) in the Lower Guadiana in Portugal, and Rivierenland in the Netherlands. The analysis comprises several regime elements considered to be important in adaptive and integrated water management: agency, awareness raising and education, type of governance and cooperation structures, information management and—exchange, policy development and—implementation, risk management, and finances and cost recovery. This comparative analysis has an explorative character intended to identify general patterns in adaptive and integrated water management and to determine its role in coping with the impacts of climate change on floods and droughts. The results show that there is a strong interdependence of the elements within a water management regime, and as such this interdependence is a stabilizing factor in current management regimes. For example, this research provides evidence that a lack of joint/participative knowledge is an important obstacle for cooperation, or vice versa. We argue that there is a two-way relationship between information management and collaboration. Moreover, this research suggests that bottom-up governance is not a straightforward solution to water management problems in large-scale, complex, multiple-use systems, such as river basins. Instead, all the regimes being analyzed are in a process of finding a balance between bottom-up and top–down governance. Finally, this research shows that in a basin where one type of extreme is dominant—like droughts in the Alentejo (Portugal) and floods in Rivierenland (Netherlands)—the potential impacts of other extremes are somehow ignored or not perceived with the urgency they might deserv

    Reconciling the potentially irreconcilable? Genotypic and phenotypic amoxicillin-clavulanate resistance in Escherichia coli

    Get PDF
    Resistance to amoxicillin-clavulanate, a widely used beta-lactam/beta-lactamase inhibitor combination antibiotic, is rising globally, and yet susceptibility testing remains challenging. To test whether whole-genome sequencing (WGS) could provide a more reliable assessment of susceptibility than traditional methods, we predicted resistance from WGS for 976 Escherichia coli bloodstream infection isolates from Oxfordshire, United Kingdom, comparing against phenotypes from the BD Phoenix (calibrated against EUCAST guidelines). A total of 339/976 (35%) isolates were amoxicillin-clavulanate resistant. Predictions based solely on beta-lactamase presence/absence performed poorly (sensitivity, 23% [78/339]) but improved when genetic features associated with penicillinase hyperproduction (e.g., promoter mutations and copy number estimates) were considered (sensitivity, 82% [277/339]; P < 0.0001). Most discrepancies occurred in isolates with MICs within ±1 doubling dilution of the breakpoint. We investigated two potential causes: the phenotypic reference and the binary resistant/susceptible classification. We performed reference standard, replicated phenotyping in a random stratified subsample of 261/976 (27%) isolates using agar dilution, following both EUCAST and CLSI guidelines, which use different clavulanate concentrations. As well as disagreeing with each other, neither agar dilution phenotype aligned perfectly with genetic features. A random-effects model investigating associations between genetic features and MICs showed that some genetic features had small, variable and additive effects, resulting in variable resistance classification. Using model fixed-effects to predict MICs for the non-agar dilution isolates, predicted MICs were in essential agreement (±1 doubling dilution) with observed (BD Phoenix) MICs for 691/715 (97%) isolates. This suggests amoxicillin-clavulanate resistance in E. coli is quantitative, rather than qualitative, explaining the poorly reproducible binary (resistant/susceptible) phenotypes and suboptimal concordance between different phenotypic methods and with WGS-based predictions

    Pediatric endurance and limb strengthening for children with cerebral palsy (PEDALS) – a randomized controlled trial protocol for a stationary cycling intervention

    Get PDF
    BACKGROUND: In the past, effortful exercises were considered inappropriate for children with spastic cerebral palsy (CP) due to concern that they would escalate abnormalities including spasticity and abnormal movement patterns. Current scientific evidence indicates that these concerns were unfounded and that therapeutic interventions focused on muscle strengthening can lead to improved functional ability. However, few studies have examined the potential benefits of cardiorespiratory fitness exercises in this patient population. METHODS/DESIGN: The rationale and design of a randomized controlled trial examining the effects of a stationary cycling intervention for children with CP are outlined here. Sixty children with spastic diplegic CP between the ages of 7 and 18 years and Gross Motor Function Classification System (GMFCS) levels of I, II, or III will be recruited for this study. Participants will be randomly assigned to either an intervention (cycling) or a control (no cycling) group. The cycling intervention will be divided into strengthening and cardiorespiratory endurance exercise phases. During the strengthening phase, the resistance to lower extremity cycling will be progressively increased using a uniquely designed limb-loaded mechanism. The cardiorespiratory endurance phase will focus on increasing the intensity and duration of cycling. Children will be encouraged to exercise within a target heart rate (HR) range (70 – 80% maximum HR). Thirty sessions will take place over a 10–12 week period. All children will be evaluated before (baseline) and after (follow-up) the intervention period. Primary outcome measures are: knee joint extensor and flexor moments, or torque; the Gross Motor Function Measure (GMFM); the 600 Yard Walk-Run test and the Thirty-Second Walk test (30 sec WT). DISCUSSION: This paper presents the rationale, design and protocol for Pediatric Endurance and Limb Strengthening (PEDALS); a Phase I randomized controlled trial evaluating the efficacy of a stationary cycling intervention for children with spastic diplegic cerebral palsy

    Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin

    Get PDF
    Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio
    corecore